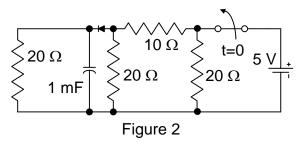
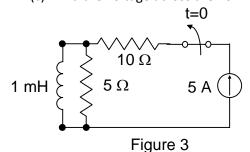

Homework 8 First-Order Transients

HW36:


Consider the time-varying circuit shown in Fig. 1.

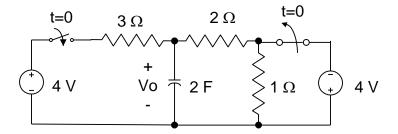
- (a) Is this circuit excited by initial conditions, sources, or both?
- (b) What is the value of capacitance needed in Fig. 1 so that the voltage across the capacitor never exceeds (a) 200 V, (b) 20 V, and (c) 2 V?

HW37:


- 2 Consider the time-varying circuit shown in Fig. 2.
 - (a) Is this circuit excited by initial conditions, sources, or both?
 - (b) Find the voltage across the capacitor in Fig. 2 for all times t>0.
 - (c) What role does the ideal diode play in this circuit, if any?

HW38:

Consider the time-varying circuit shown in Fig. 3.


- (a) Is this circuit excited by initial conditions, sources, or both?
- (b) Find the voltage across the inductor in Fig. 3 for all times t>0.
- (c) Find the voltage across the 10 Ω resistor in Fig. 3 for all times t>0.

HW39:

Consider the time-varying circuit shown below.

- (a) Is this circuit excited by initial conditions, sources, or both?
- (b) Find the voltage across the capacitor in Fig. 7 for all times t>0.
- (c) Find the time when the capacitor voltage is zero.

HW40:

Find the time, t_{zero} , when the voltage on capacitor equals zero (M Ω = mega-ohm).

t=0 t=0 the
$$1 \text{ M}\Omega$$